Telegram Group & Telegram Channel
Какой слой в gpt обрабатывает выход трансформера и как он работает?

В архитектуре GPT (Generative Pre-trained Transformer) слой, который обрабатывает выход трансформеров, называется "декодирующим слоем" или "генеративным слоем".

Этот слой работает следующим образом:
1. Составление вероятностного распределения слов: Для генерации текста декодирующий слой принимает выходные данные из трансформера, которые представляют собой скрытое состояние, кодирующее информацию о контексте. Декодирующий слой преобразует это скрытое состояние в вероятностное распределение над возможными словами в словаре.
2. Генерация слов: На основе вероятностного распределения декодирующий слой выбирает следующее слово для генерации. Это может быть выполнено с использованием методов выбора, таких как сэмплирование согласно вероятностям или выбор наиболее вероятного слова.
3. Обратная связь: Сгенерированное слово добавляется к предыдущему контексту, и этот расширенный контекст возвращается на вход декодирующему слою. Это позволяет модели учитывать уже сгенерированный текст при принятии решения о следующем слове.
4. Повторение: Процесс генерации слов повторяется до достижения определенной длины текста или до выполнения некоторого условия завершения, такого как генерация специального символа конца текста.
5. Обучение: Декодирующий слой обучается на парах вход-выход на больших текстовых корпусах. Обучение включает в себя подбор параметров так, чтобы модель максимизировала вероятность правильной генерации текста.



tg-me.com/ds_interview_lib/44
Create:
Last Update:

Какой слой в gpt обрабатывает выход трансформера и как он работает?

В архитектуре GPT (Generative Pre-trained Transformer) слой, который обрабатывает выход трансформеров, называется "декодирующим слоем" или "генеративным слоем".

Этот слой работает следующим образом:
1. Составление вероятностного распределения слов: Для генерации текста декодирующий слой принимает выходные данные из трансформера, которые представляют собой скрытое состояние, кодирующее информацию о контексте. Декодирующий слой преобразует это скрытое состояние в вероятностное распределение над возможными словами в словаре.
2. Генерация слов: На основе вероятностного распределения декодирующий слой выбирает следующее слово для генерации. Это может быть выполнено с использованием методов выбора, таких как сэмплирование согласно вероятностям или выбор наиболее вероятного слова.
3. Обратная связь: Сгенерированное слово добавляется к предыдущему контексту, и этот расширенный контекст возвращается на вход декодирующему слою. Это позволяет модели учитывать уже сгенерированный текст при принятии решения о следующем слове.
4. Повторение: Процесс генерации слов повторяется до достижения определенной длины текста или до выполнения некоторого условия завершения, такого как генерация специального символа конца текста.
5. Обучение: Декодирующий слой обучается на парах вход-выход на больших текстовых корпусах. Обучение включает в себя подбор параметров так, чтобы модель максимизировала вероятность правильной генерации текста.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/44

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Библиотека собеса по Data Science | вопросы с собеседований from kr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA